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AUTOMATIC ELECTRONIC POLARIZATION

TRACKING SYSTEM

by

Ralph E. Taylor

ABSTRACT
An automatic electronic method is described that continuously

tracks, and measures to better than one-degree, the polarization

orientation angle of a linearlypolarized signal from a satellite such

as ATS-F&G. Comparable systems utilize a mechanically rotating

antenna feed.

All linear polarizations are comprised of two circularly po-

larized components of opposite sense. This system measures the

RF phase difference between the two oppositely polarized compo-
nents to determine the linear polarization ormntation angLe. This

report also describes an error analysis that defines orientation

angle errors introduced by antenna ellipticity ratio and thermal

noise.

The polarization tracking technique described herein is ap-

plicable to the 2 GHz ATS-F&G proposed ground equipment and the

4 GHz Apollo Instrumentation Ship (AIS) SATCOM ground-terminal

stations using a 30 foot diameter dish antenna with cassegrainian

feed.
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AUTOMATIC ELECTRONIC PO_ .RIZATION

TRACKING SYSTEM

INTRODUCTION

A concept is developedthat provides an automatic electronic methodfor
continuously tracking, and consequentlyaccurately measuring to better than
one-degree, the polarization orientation angle of a linearly polarized signal
transmitted from a spacecraft or other airborne vehicle. A critical require-
ment for placing a synchronous spacecraft in its proper orbit is the determina-
tion of the spacecraft attitude. The attitude is obtainedby measuring the
polarization orientation angle, as a function of time, during the transfer orbit.
This time related data is necessary to control the spacecraft to the required
apogeefiring attitude, predict the exact firing time, andfire the apogeemotor
for missions such as the Applications Technology Satellite (ATS-F&G).

Various methods are now available for measuring the polarization orienta-
tion angle. For example, the National Aeronautics and SpaceAdministration's
(NASA)SpaceTracking and Data Acquisition Network (STADAN)Rosman, N.C.
No. 2 85-foot diameter dish antennautilizes a rotating motor-driven 4 GHz
antennafeed,(1) in conjunction with a servo loop, that performed this function
for the ATS-B spacecraft launchedonDecember 7, 1966. An undesirable feature
of this technique is the mechanically rotating antennafeed with its associated
operational problems andlarge size. An electronic-type system, employedby
Vogt,(2) is complicated and does not have sufficient accuracy.

The electronic polarization tracking technique, subsequentlydescribed, has
the following advantages:

(1) Eliminates the mechanical rotating antennafeed,

(2) Determines angular orientation of a linearly polarized vector to better

than 1 ° as a linear function of the radio frequency (RF) phase difference

between two coherent circularly polarized signals of opposite sense,

(3) Utilizes a conventional "off-the-shelf" simultaneous-lobing monopulse

type autotrack receiver as the polarization tracking receiver, and,

(4) Utilizes a servo loop, similar to the Rosman No. 2 Polarization

Tracking System, as a part of the null-seeking tracking loop.



A description of the RosmanNo. 2 motor-driven type Polarization Tracking
System is given in the attached Appendix 1.

DESCRIPTION OF ELECTRONIC POLARIZATION TRACKING TECHNIQUE

All linear polarizations can be considered as a combination of two circularly
polarized waves with the respective electric vectors rotating in oppositedirec-
tions.(2,3) In order to resolve these twovectors, the receiving antennamust
provide two circularly pol--arizedsignal output ports with opposite sense (gee
Figure 1 Block Diagram). It will be shownthat the differential RF phase
betweenthese two oppositely polarized componentsis a constant for any given
orientation angle, 80.

The proposed system utilizes a null-seeking servo loop wherein a
continuously-adjustable phase-shifter, in a transmission line, gives an ac-
curate readout of 80. The system is relatively insensitive to input signal
level changessince a sum-and-difference amplitude ratio is the driving func-
tion for the servo. A decided advantageis that a conventionalautotrack receiver
canbe used as the polarization tracking receiver.

The receiving antenna(e.g. 30 foot dish) provides two circularly polarized
outputs consisting of left-hand, _LH' and tight'hand, XRH, signal components

(see Figure 1 block diagram).

Reference 4 shows that the left-hand (counter-clockwise) circularly

polarized wave can be designated by the vector,

The corresponding right-hand (clockwise) rotating circularly polarized

wave as,

a x and ay are unit vectors in right'handed coordinate system. Then, for zero

phase difference between oppositely polarized components,

: _LH + _-_'RH " (3)

2



¢.O

ADJUSTABLE PHASE **POLARIZATION
LINEAR _1 SHIFTER RECEIVER

POLAR ]// L._.___.._$ LHOL_

R I I

I _ow-_

I

ANTENNA

(e.g. 30 FT.)

I MOTORX/4 - 3 X/4 COAXIAL DRIVE

RF HYBRI D. I

STANDARD UNIT J

(e.g. TELEDYNE 105A I
OR ITTFL 4003
AUTO TRAC K J

RECEIVER).

DISH _ i

_.eLOHOr I

I [

l

J DIGITAL
OPTICAL

ENCODER

H SERVO J"

ANTENNA
MOUNTED

_ IN-HOUSE

I

I
-I
I
I
I
I
I
J

_0

Figure 1. Electronic Polarization Tracking System.



From (3), the electric field vector can be written as:

-- ZL_ exp (- JPL_) + EI_ exp (-j/3RH ) (4)

flRH' flLH = respective RF phase of RH andLH components from 0° reference.
From (1), (2) and (4),

= a x E x + ay Ey (5)

E x = (_)[exp (-jfl_H)+ exp (-j/3R_)] (6)

Ey = (-_)Ij exp (-JfiLH)- J exp (-JfiRH)] (7)

The angular rotation angle, 8 0 , is given by

(8)

Factoring out exp [± 0.5 j(flLH+ /3RH)] from (6) and (7) obtains

Ex = E1 exp [-0"5j(/3LH +/3RH)] C SO I_RI'I-_LI'I2 (9)

Ey--- E2 exp [- 0.5 j(/_LH +/_Rtt)] sirll/_RH ;/_LH ] (lO)



Then from (9) and (10),

E
Y

E
X

E 2 sin 2

_RH -_LH 1E 1 cos 2

or

E
y

E
X

tan (11)

Substituting (11) in (8),

_LH-_RH] E2_o = 2

Letting, 3¢ = /_LH - /_RH '

(12)

Equation (12) is a significant result since it reveals that the incoming

linearly polarized wave orientation, 80 , is a linear function of the RF phase

difference, A¢, between the left-hand phase, flLH, and the right-hand phase,

flRH" The factor E2/E 1 is the ellipticity ratio (minor-to-major axis voltage

ratio) for circular polarization. Ideally, E2/E 1 = 1 for perfect circular
polarization.

The phase difference versus time between the two circularly polarized

signal components is graphically shown in Figure 2 for values of the orientation

angle, 80 = 0 ° , 45 °, 90 ° and 180 °.

It is alSO apparent from Figure 2 that 80 = A¢/2 for E2/E I = 1. An interest-

ing point is that A¢ = 0 ° for both 80 = 0 ° and 80 = 180 ° which are the ambiguous
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points. However, this ambiguity need not be resolved since only the location of

a plane is required. A calibration boresight antenna would be utilized to es-

tablish the A¢ = 0 ° reference plane (see Figure 2).

It is now apparent that a suitable technique is desired to accurately measure

the RF phase difference, L_¢. The use of a direct-reading phase measuring

system such as a minitrack-type interferometer, or a dual-channel phase-lock

system, could be used to accomplish this function. However, a simpler scheme

is to use a null-indicating device to measure _. An amplitude sum-and-

difference ratio can be generated to indicate _ and hence 80 .

Such a system employs a continuously adjustable phase shifter that auto-

matically corrects for the phase difference, A¢, to maintain an in-phase

relationship at the two inputs to an RF hybrid (see Figure 1). The resulting

and _ channels are amplified in low-noise preamplifiers and frequency

converted from 2 GHz down to 136 MHz. A conventional autotrack receiver

produces the sum-and-difference ratio utilized to drive the servo.

The two circular polarization output transmission lines are critical, in

terms of differential phase and amplitude variations, from the antenna to the

two input arms of the sum-and-difference RF hybrid in that these parameters

directly affect 80 . However, these parameters are readily controlled since
these lines are short. The sum-and-difference RF hybrid generates sum-and-

difference signals that are relatively insensitive to differential phase and

amplitude changes in the output lines. For example, the normal gain and phase

changes between preamplifiers (i.e., 1 db and 5°), and remotely located (up to

1500 ft. away) polarization tracking receiver channels (i.e., 2 db and 10°), no

longer affect the accuracy of the orientation angle measurement.

A motor-driven adjustable phase shifter is suggested since the phase rates

are not large. A digital optical encoder, such as a Wayne-George type 12-bit

encoder, would provide a convenient remote readout of 80 with a precision

better than 0.1 °. An alternate method would be to monitor 80, directly, as an

indicator output from the servo electronics.

An electronic phase-shifter, such as a ferrite device, could be incorporated

instead of the mechanical phase shifter. However, the problems associated with

high insertion loss and maintaining good phase linearity off-set advantages of a

ferrite phase shifter. In any event, a motor-driven phase shifter is vastly superior

to a motor-driven antenna feed.

The sum-and-difference ratio, 151/1_1 , from the polarization tracking re-

ceiver is derived as follows. The _ component (see Figure 3a) from the RF
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hybrid can be expressed as

Sum,_ : (_L.÷_=Hco=_¢) + j X=.sin _¢ (13)



Reducingto

I_I_ = (_LH+_RHOOS_¢)_+ (_RHsin_¢)_ (14)

Similarly, the A component (see Figure 3b) is

Difference, A = (XLH-:RHCOSZ_b) + j 2RnSin_ (15)

IAI _ : (_.=,-_,cos_¢)= + (_,sin_¢) = (16)

From (14) and (16),

!ZXl
Y_

_L2H - 2 XLH_RH COS _ + _R2It__ 1/2
+_

L_ZH+=_,.H_RHCOS'_+_#HJ
(17)

For equal amplitudes, 5:LH = 2RH and (17) reduces to

IAI [iI- cos A¢]I/2I_1 - -+ +cos_CJ (18)

Equation (18) further reduces to,

1_-_ = tan (19)

From (12)

(20)



Substituting(20) in (19)

IAI
I_I - an _o (21)

Equation (21) is the servo error function obtained from the tracking re-

ceiver product detector. A plot of (21) is shown in Figure 4 for a ratio of

El/E 2 = I. 03 corresponding to an antenna circular polarization ellipticity
ratio of 0.3 db.

The servo system will always make IAI/Izl = o, for values of 8o <_+
where 8 o is measured from the 0 ° reference plane. The automatic phase-shifter,

therefore, continuously adjusts for A¢ to maintain an in-phase relationship

between the two input ports of the _ and A hybrid. The shaft rotation of the

automatic phase-shifter gives a direct indication of 80 .

Error Analysis

Table i is a tabulation of the polarization orientation variations for various

values of A¢ and 80 for an antenna ellipticity ratio of 0.3 db. Table 1 indicates

that this system comes close to achieving the design goal of 1 °, or better. How-

ever, a 0.3 db antenna ellipticity ratio means that the antenna must be practically

perfect. The variation in 80, due to the ellipticity ratio, can be reduced using

a rotating calibration boresight source. It should be possible to maintain &90 < 1°

through appropriate preflight calibration which would relax the ellipticity ratio

to about 0.5 db. 80 ideal is obtained for perfect circular polarization where

E1/E 2 = 1.

Table 1

Angular Error in _0, versus /_¢

E LLIPTICITY

RATIO

0.3 db

0.3 db

0.3 db

A¢

45 °

90 °

135 °

8 o

INDICATED

21.8 °

43.7 °

65.5 °

8 o

IDEAL

22.5 °

45.0 °

67.5 °

A8 o

0.7 °

1.3 °

2.0 °
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Another factor which limits the accuracy of _ is the polarization tracking

signal-to-noise ratio (SNR). This thermal noise error is expressed as,

(s)_ = 57.3 degrees rms . (22)

The corresponding polarization orientation error is A_ 0 = _A¢/2 for an

antenna ellipticity ratio, E2/E 1 = 1.

Table 2

Angular Error in 80 Due to Thermal Noise

S/N
(POWER RATIO)

+ 4O db

+ 50 db

+ 60 db

0.57 ° rms

0.18 ° rms

0.057 ° rms

_0

0.29 ° rms

0.09 ° rms

0.029 ° rms

It is apparent from Table 2 that a SNR > + 40 db should be maintained to

keep the polarization orientation error, due to thermal noise, less than 0.3 ° rms

to achieve a peak error of 1°, or less. An input SNR of + 40 db is fairly high but
is not difficult to achieve. Calculations show that a nominal SNR > + 40 db can be

maintained for the S-band down-link carrier signal for the polarization angle

measurement. This SNR can be obtained in a 1 Hz loop tracking bandwidth for

a 1-watt 2 GHz signal transmitted at synchronous altitude. It is assumed a

30-ft. dish and 2 db noise figure preamplifier will be used.

Feed Characteristics

The recommended design characteristics for the polarization tracking

ground antenna feed elements are as follows:

(1) Elements must be located at the focal point, or as close as possible, to

obtain identical far-field radiation patterns that coincide to insure a

suitable ellipticity ratio.

12



(2) Circularly polarized feed elements with opposite sensemust be pro-
vided (i.e., one element RHC- right-hand circular andthe other LHC -
left-hand circular).

(3) Ellipticity ratio of 0.5 db, or less, is desired.

(4) VSWR(voltage standing wave ratio) of 1.15:1, or less, is desired.

(5) Isolation to be at least 45 db betweenRHC andLHC outputports.

(6) Amplitude balance within 0.3 db between_ and Ahybrid input ports
assuming an ideal ellipticity ratio of 0 db.

NETWORK APPLICATIONS

ATS- F&G Satellites

The automatic electronic polarization tracking technique described herein

is applicable to the ATS-F&G proposed ground equipment using a 30 ft. diameter

paraboloidal dish antenna with a cassegrainian type feed. The following ATS-F&G

operational requirements can be met with this system, namely,

Frequency: 2200 - 2300MHz

Antenna Polarization: Linear (incoming wave)

Accuracy of Polarization Angle Measurement: ± 1 °

Polarization Orientation Angular Rate: 1 ° per second, maximum.

It is planned that the Goddard Range and Range Rate (RARR) stations at

Rosman, N. C.; Madgar (Tananarive, Malagasy Republic); Carnarvon, Australia;

Santiago, Chile; and Alaska sites be converted to the new frequency allocations

of 1750-1850 MHz, earth to space, and 2200-2300 MHz, space to earth. Also,

the RARR dual, 14 foot diameter, paraboloidal S-band antenna, one receive and

one transmit, will be replaced with a single 30-foot diameter dish with a casse-

grainian feed that will include a polarization tracking capability.

An additional operational requirement is to provide simultaneous telemetry

and command functions in the 30 foot dish at the same time as the polarization

angle measurement is made.

13



Apollo SATCOM (Satellite Communication)

The automatic electronic polarization tracking technique, described herein,

is also under consideration for the Apollo Instrumentation Ship (AIS) SATCOM

ground terminal stations using a cassagrainian 30 foot dish antenna with a

6 GHz up-link and a 4 GHz down-link. A polarization tracking accuracy of

_- 1 °, at 4 GHz, is required for this application. The attitude of the polarization

vector will vary at a rate much less than 1 ° per second since the SATCOM

satellite will be in a synchronous orbit.

CONC LUSIONS

An electronic polarization tracking concept has been developed that provides

automatic polarization tracking of an incoming linearly polarized wave to an

accuracy better than _- 1 °. This technique is applicable to the ATS-F&G satellite

(2 GHz down-link) and Apollo SATCOM satellite (4 GHz).

This technique is a simplified approach in that it eliminates the require-

ment for a mechanical rotating antenna feed. It also simplifies the microwave

transmission line plumbing problem in similar systems using half-wave plates,
mechanical rotating joints, etc.
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APPENDIX I

MOTOR-DRIVEN POLARIZATION TRACKING SYSTEM

A motor-driven polarization tracking system for ATS-B, at 4 GHz, exists
in the RosmanNo. 2 85 foot dish, the Mojave, California 40 foot dish, andthe
40 foot dishes at the Japanese and Australian sites for tracking of ATS-B
polarization at frequencies between4100-4200MHz.

A block diagram of this system(5) is shownin Figure 5. The antennafeed
has a port that excites a mode orthogonal to the principal receiving polarization
vector. This creates the effect of a null channel whenthe reference anderror
channel outputs are compared in a phase-sensitive detector that produces a
voltage proportional to the error in polarization tracking and drives the feed
back to the null point.

The accuracy of the polarization orientation angle, 80 , is affected by both

differential phase shift and differential amplitude unbalance between the two
channels.

For a servo error voltage equal to zero and for a polarization tracking error

less than 2 degrees, the polarization orientation angular error, A_, is

E
q

Ec tan ¢ (23)

V FEED0o 4 GHz PREAMP

¢_ DET.4 GHz PREAMP

REF. ICHAN.

ERROR ]CHAN.

SERVO
SYSTEM

DRIVESYSTEM J_

Figure 5. Motor Driven Feed Type Polarization Tracking System for ATS-B (Rosman 2).
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= Differential phase shift between reference and error channel, degrees.

E = Amplitude of quadrature voltage in error channel.
q

E c = Amplitude of co-phasal voltage in error channel.

The ratio of Eq/E c in (23) can be determined from,

Eq R I _ R 2

E - R 1 R2 + 1 (24)

R 1 and R 2 are the axial voltage ratios of the incident wave and receiving antenna,
respectively, for two elliptically polarized antennas.

A typical value of E /E c = 0.2 which corresponds to R1 = 20 db and
q/

R 2 = 20 db. The Rosman 4 GHz parametric preamplifier has a low phase drift
of about 1 °, however, the total differential phase shift including the polarization

tracking receiver is probably not maintained to better than ¢ = 5 °. This cor-

responds to an angular error, /_ = 1 °.

The major difficulty with any polarization angle measurement scheme is the

accurate calibrating and establishing of reference positions. From the measure-

ment of the ATS-B orbit, after apogee motor firing, it was possible to determine
the error in the attitude measurement. This error is a combination of sun sensor

data and polarization angle measurement. It was found that the measured atti-

tude was incorrect by 0.9 degree. From this history of polarization tracking

and the similar problem calibrating for any scheme, it is not anticipated that

polarization angle measurement errors may be reduced significantly below

one-degree.
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